
PRINCIPLE OF COMMUNICATION

Transmission from tower of height h

• the distance to the horizon $d_T = \sqrt{2Rh_T}$

•
$$d_{M} = \sqrt{2Rh_{T}} + \sqrt{2Rh_{R}}$$

Amplitude Modulation

• The modulated signal $c_m(t)$ can be written as

$$c_{m}(t) = A_{c} \sin \omega_{c} t + \frac{\mu A_{c}}{2} \cos (\omega_{c} - \omega_{m}) t - \frac{\mu A_{c}}{2} \cos (\omega_{c} + \omega_{m})$$

• Modulation index $m_a = \frac{Change in amplitude of carrier wave}{Amplitude of original carrier wave} = \frac{kA_m}{A_c}$ where k = A factor which determines the maximum change in the amplitude for a given amplitude E_m of the modulating. If k = 1 then

$$m_{a} = -\frac{A_{m}}{A_{c}} = \frac{A_{max} - A_{min}}{A_{max} - A_{min}}$$

• If a carrier wave is modulated by several sine waves the total modulated index m_t is given by m_t = $\sqrt{m_1^2 + m_2^2 + m_3^2 + \dots}$

• Side band frequencies

 $(f_c + f_m)$ = Upper side band (USB) frequency

 $(f_{c} - f_{m})$ = Lower side band (LBS) frequency

• Band width = $(f_c + f_m) - (f_c - f_m) = 2f_m$

• Power in AM waves :
$$P = \frac{V_{rms}^2}{R}$$

(i) carrier power
$$P_c = \frac{\left(\frac{A_c}{\sqrt{2}}\right)^2}{R} = \frac{A_c^2}{2R}$$

Page # 82

(ii) Total power of side bands $P_{sb} = \frac{\left(\frac{m_a A_c}{2\sqrt{2}}\right)^2}{R} = \frac{\left(\frac{m_a A_c}{2\sqrt{2}}\right)}{2R} = \frac{m_a^2 A_c^2}{4R}$

(iii) Total power of AM wave $P_{Total} = P_c + P_{ab} = \frac{A_c^2}{2R} \left(1 + \frac{m_a^2}{2} \right)$

(iv)
$$\frac{P_t}{P_c} = \left(1 + \frac{m_a^2}{2}\right)$$
 and $\frac{P_{sb}}{P_t} = \frac{m_a^2/2}{\left(1 + \frac{m_a^2}{2}\right)}$

(v) Maximum power in the AM (without distortion) will occur when $m_a = 1$ i.e., $P_t = 1.5 P = 3P_{ab}$

(vi) If I_c = Unmodulated current and I_t = total or modulated current

$$\Rightarrow \frac{\mathsf{P}_{\mathsf{t}}}{\mathsf{P}_{\mathsf{c}}} = \frac{I_{\mathsf{t}}^2}{I_{\mathsf{c}}^2} \Rightarrow \frac{I_{\mathsf{t}}}{I_{\mathsf{c}}} = \sqrt{\left(1 + \frac{m_{\mathsf{a}}^2}{2}\right)}$$

Frequency Modulation

• Frequency deviation $\delta = (f_{max} - f_c) = f_c - f_{min} = k_f \cdot \frac{E_m}{2\pi}$

• Carrier swing (CS) = CS =
$$2 \times \Delta f$$

• Frequency modulation index (m_f)

=.
$$m_f = \frac{\delta}{f_m} = \frac{f_{max} - f_c}{f_m} = \frac{f_c - f_{min}}{f_m} = \frac{k_f E_m}{f_m}$$

• Frequency spectrum = FM side band modulated signal consist of infinite number of side bands whose frequencies are $(f_c \pm f_m)$, $(f_c \pm 2f_m)$, $(f_c \pm 3f_m)$

• Deviation ratio =
$$\frac{(\Delta f)_{max}}{(f_m)_{max}}$$

ent modulation , m = $\frac{(\Delta f)_{actual}}{(Af)_{actual}}$

• Percent modulation , m =
$$\frac{(\Delta f)_{actual}}{(\Delta f)_{max}}$$

Page # 83

